(1)证明:∵四边形ABCD是菱形,∴AB=BC,
又∵AB=AC,
∴△ABC是等边三角形,
∵E是BC的中点,
∴AE⊥BC(等腰三角形三线合一),
∴∠1=90°,
∵E、F分别是BC、AD的中点,
∴AF=
| 1 |
| 2 |
| 1 |
| 2 |
∵四边形ABCD是菱形,
∴AD∥BC且AD=BC,
∴AF∥EC且AF=EC,
∴四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形),
又∵∠1=90°,
∴四边形AECF是矩形(有一个角是直角的平行四边形是矩形);
(2)在Rt△ABE中,AE=
| 82−42 |
| 3 |
所以,S菱形ABCD=8×4
| 3 |
| 3 |

