是否存在大于1的正整数m,使得f(n)=(2n+7)·3^n+9对任意正整数n都能被m整除?
:(2k+9)·3^(k+1)+9=(2k+7)*3^(k+1)+2*3^(k+1)+9
=(2k+7)*3^k+9+2*(2k+7)*3^k+2*3^(k+1)怎么来的?配不对啊
(2k+7)*3^k+9+2*(2k+7)*3^k+2*3^(k+1)这个可以配出来
但是后来合并的时候后面一部分得不到被36整除的式子啊
人气:487 ℃ 时间:2019-08-19 03:22:55
解答
一定会恍然大悟的(2k+9)·3^(k+1)+9=(2k+7)*3^(k+1)+2*3^(k+1)+9 ……这个是分配律,应该没有问题=3*(2k+7)*3^k+2*3^(k+1)+9 ……3^(k+1)=3*3^k,也没问题3*(2k+7)*3^k就相当于3倍的(2k+7)*3^k现在(2k+7)*3^k+2*(2k+7...
推荐
- 是否存在大于1的正整数m,使得f(n)=(2n+7)·3^n+9对任意正整数n都能被m整除?
- 是否存在正整数m,使得f(n)=(2n+7)*3^n+9对任意自然数n都能被m整除.若存在,求出最大的m值
- 若m,n为正整数,设M=2m+1,N=2n-1.当m=n时:若M²-N²能被正整数a整除,试分析正整数a的最大值
- m.n是正整数,若m大于n,求证2的2的n次方减1能整除2的2的m次方减1
- 用数学归纳法证明f(n)=[(2n+7)3^n]+9对任意正整数n,都能被m整除,且m最大为36
- Here is a birthday c_____ for you.And happy birthday to you!
- 填上适当的数使等式成立x^2-4x+_____=(x-_____)^2
- 我希望有一天能现场看次nba比赛,用英语怎么说?
猜你喜欢