空间四边形O-ABC中,OA=OB,CA=CB,点E,F,G,H分别是OB,OA,BC,CA的中点,求证:四边形EFGH是矩形
人气:216 ℃ 时间:2020-05-06 06:14:05
解答
画图,易得EF‖AB,且EF=1/2AB.HG‖AB,且HG=1/2AB
所以四边形EFGH是平行四边形
△ACO≌△BCO,(三边相等).所以OC平分角AOB
在等腰三角形ABO中,OC垂直平分AB,
且EF‖AB,EH‖OC.所以EF⊥EH,所以四边形EFGH是矩形
推荐
- 已知空间四边形OABC中,OA=OB,CA=CB,点E,F,G,H分别是OA,OB,BC,CA的中点.求证:四边形EFGH是矩形.
- △ABC内接于圆O,CA=CB,CD∥AB且与OA的延长线交于点D
- 已知空间四边形OABC中,OA=OB,CA=CB,点E,F,G,H分别是OA.OBBCCA的中点.求证:四边 用向量
- 设 O为 三 角 形 ABC内 部 任 一 点 , 则 OA+OB小 于 CA+CB
- 不用向量方法证明已知空间四边形OABC中,OA=OB,CA=CB,EFGH分别为OA OB BC CA中点,求证四边形EFGH是矩形
- 用简便方法计算:56×74+85×44+11×56.
- 分解因时:(a+2)平方-2a(a+2) 计算:(a的三次方+4a的平方+4a)÷(a的平方+2a) 快啊
- 六年级下册语文每课一练第17课《汤姆.索亚历险记》第五题
猜你喜欢