若lim[a/(1-x)-b/(1-x^2)]=1,则常数a、b的值为
人气:270 ℃ 时间:2020-06-15 07:00:10
解答
a=1,b=2或a=-1.b=-2.
该题应给出基本变量x的变化趋势x→1,
a/(1-x)-b/(1-x^2)=(ax+(a-b))/(1-x^2)
当x→1时,1-x^2→0,1-x^2=(1-x)*(1+x)
欲使极限存在必须ax+(a-b)=x-1,或者ax+(a-b)=1-x
由ax+(a-b)=x-1和x的任意性得a=1,a-b=-1,解得b=2
同理由ax+(a-b)=1-x得a=-1.b=-2.
推荐
猜你喜欢
- 英语翻译
- 概率的问题.数学 小颖同学骑自行车在上学的路上会通过两个十字路,十字路口设有红.黄.绿,三种信号灯
- abc是单质其中a是地壳中含量最高的金属
- 千锤万凿出深山, 烈火焚烧若等闲.粉骨碎身浑不怕,要留清白在人间打一建筑材料
- 甲乙做一批零件,完成时乙做总数的8分之3,已知乙单独做要12小时,甲每小时做50个,完成时甲做多少
- 电场可以存在于绝缘体中吗
- 地球同步卫星的周期,线速度和地球的周期,
- 求三次函数f(x)=x³-3x+1在[0,1]满足拉格朗日中值定理求ξ的值?