椭圆x^2/9 + y^2/3=1与直线y=kx-2交A,B两点,P(0,1),且|PA|=|PB|,求直线方程
人气:235 ℃ 时间:2020-04-07 02:40:37
解答
x^2/9 + y^2/3=1,即x^2+3y^2-9=0
将y=kx-2代入得:x^2+3(kx-2)^2-9=0
(3k^2+1)x^2-12kx+3=0
x1+x2=12k/(3k^2+1)
P(0,1)
令A(x1,y1),B(x2,y2)
PA^2=x1^2+(y1-1)^2,PB^2=x2^2+(y2-1)^2
|PA|=|PB|,PA^2=PB^2
x1^2+(y1-1)^2=x2^2+(y2-1)^2
(x1+x2)(x1-x2)+(y1+y2-2)(y1-y2)=0
y=kx-2
(x1+x2)(x1-x2)+(kx1+kx2-6)(kx1-kx2)=0
(x1-x2){(x1+x2)+k^2(x1+x2)-6k} = 0
A,B不在y轴上,所以x1-x2≠0
∴(x1+x2)+k^2(x1+x2)-6k = 0
(k^2+1)(x1+x2)-6k=0
(k^2+1)*12k/(3k^2+1)-6k=0
12k^3+12k-18k^3-6k=0
6k^3-6k=0
k(k+1)(k-1)=0
k=0时,与椭圆无交点
∴k=-1,或1
直线方程y=-x-2,或y=x-2
推荐
- 设A,B是x轴上的两点,点P的横坐标为2,且|PA|=|PB|,若直线PA的方程为x-y+1=0,则直线PB的方程是_.
- 已知椭圆方程为(x^2/9)+(y^2/3)=1,设直线l:y=kx-2与椭圆交于A,B两点,点P(0,1),且PA的绝对值=PB的绝对值
- 已知椭圆x225+y216=1内有两点A(1,3),B(3,0),P为椭圆上一点,则|PA|+|PB|的最大值为_.
- 直线y=x+1交x轴于点P,交椭圆x^2/a^2+y^2/b^2=1(a>b>0)于相异两点A、B,且向量PA=-3向量PB
- 过点P(-3,3)做出直线l交椭圆x+2cosα,y+sinα(α为参数)于A,B两点,若|PA|*|PB|=164/7,求直线的方程
- 2013哈尔滨质检已知f(x)=ax^3-2ax^2+b(2)若f(x)在区间【-2,1】上最大值5,最小值11
- 解方程:(x-2)/0.125-(x+4)/0.2=3.9
- 计算 1+2+3+.+2010+2011+2012+2011+2010+.3+2+1
猜你喜欢