已知向量a=(2cosx+2√3sinx,1),向量b=(y,cosx),且a//b,(1)将y表示成x的函数f(x),并求f(x)的最小正周
期
(2)记f(x)的最大值为M.a,b,c分别为△ABC的三个内角A,B,C对应的边长,若f(A/2)=M且a=2,求bc的最大值
人气:443 ℃ 时间:2020-04-05 23:13:20
解答
1
a=(2cosx+2√3sinx,1),b=(y,cosx),a∥b,则:a=kb
即:(2cosx+2√3sinx,1)=k(y,cosx)
即:kcosx=1,即:k=1/cosx
y=(2cosx+2√3sinx)/k=(2cosx+2√3sinx)*cosx
=1+cos(2x)+sqrt(3)sin(2x)
=2sin(2x+π/6)+1
即:f(x)=2sin(2x+π/6)+1
最小正周期:T=2π/2=π
2
f(x)=2sin(2x+π/6)+1的最大值:M=3
f(A/2)=2sin(A+π/6)+1=3,即:sin(A+π/6)=1
A是内角,即:0
推荐
- 已知函数f(x)=向量a*向量b,其中向量a=(2cosx,根号3sinx),向量b=(cosx,-2cosx) 1)求函数f(x)在【0,π
- 已知函数f(x)=向量a*向量b,其中向量a=(2cosx,根号3sinx),向量b=(cosx,-2cosx)
- 已知向量m=(√3sinx,sinx-cosx),向量n=(2cosx,sinx+cosx),函数f(x)=1/2向量m·向量n-1
- 已知向量m=(2√3sinx,2cosx),向量n=(cosx,cosx),设函数f(x)=向量m·向量n.
- 已知向量a=(2cos,√3sinx),b=(cosx,2cosx),设函数f(x)=a·b
- 举例说出同一平面上三条直线的交点的个数 急
- 有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得新数比原数大63,设原两位数的个位数字为x,十位数字为y,则用代数式表示原两位数为.
- 英语翻译
猜你喜欢