这函数在0点的定义就是1.lim(x->0)(x/sinx-1)/x=lim(x-sinx)/(xsinx)=lim(1-cosx)/(sinx+xcosx)=limsinx/(cosx+cosx-xsinx)=0.函数在0点处局部左右都小于1,这说明他在0点局部有最大值1,或者极值.
顺便说,x0时,f'(x)=(1-cos)/(sinx)^2=2(sinx/2)^2/(sinx)^2=1/(2(cosx/2)^2).lim(x->0)f'(x)=1/2,f'(x)在0点不能连续
上面的证明有问题么?