x=1时,f′(1)=1,f(1)=0,
∴曲线y=xlnx在点x=1处的切线方程是y=x-1,即x-y-1=0
(2)f′(x)=lnx+a=0,可得x=e-a,则函数在(0,e-a)上单调递减,在(e-a,+∞)上单调递增,
若e<e-a,则函数f(x)在区间[
| 1 |
| e |
若
| 1 |
| e |
| 1 |
| e |
若
| 1 |
| e |
| 1 |
| e |
| 1 |
| e |
| a |
| e |
(3)f(x)=2x3-3x2等价于xlnx+(a-1)x=2x3-3x2,即lnx+(a-1)=2x2-3x,
∴a=2x2-3x+1-lnx在区间[
| 1 |
| 2 |
令g(x)=2x2-3x+1-lnx,则g′(x)=4x-3-
| 1 |
| x |
| (4x+1)(x−1) |
| x |
∵x∈[
| 1 |
| 2 |
∴函数在[
| 1 |
| 2 |
∵g(
| 1 |
| 2 |
∴a=2x2-3x+1-lnx在区间[
| 1 |
| 2 |
