c |
2a |
而cosB=
a2+c2−b2 |
2ac |
a2+c2−b2 |
2ac |
c |
2a |
化简得:a2+c2-b2=c2,即a=b,
∴A=B;
(II)根据余弦定理得:cos60°=
1 |
2 |
a2+c2−b2 |
2ac |
3ac |
2 |
则a2+c2-
3ac |
2 |
解得a=
c |
2 |
当a=
c |
2 |
2acosB |
c |
| ||
c |
1 |
2 |
当a=2c时,由λc=2acosB,得到λ=
2acosB |
c |
| ||
c |
综上,λ的值为
1 |
2 |
c |
2a |
a2+c2−b2 |
2ac |
a2+c2−b2 |
2ac |
c |
2a |
1 |
2 |
a2+c2−b2 |
2ac |
3ac |
2 |
3ac |
2 |
c |
2 |
c |
2 |
2acosB |
c |
| ||
c |
1 |
2 |
2acosB |
c |
| ||
c |
1 |
2 |