> 数学 >
解析:∵函数f(x)=2cosxsin(x+π/3)-√3sin^2x+sinxcosx
=2cosx(1/2sinx+√3/2cosx)-√3/2(1-cos2x)+1/2sin2x这一步的开头是怎么来的?
人气:298 ℃ 时间:2020-05-13 18:04:05
解答
解开头是sin(x+π/3)的变形
两角和的正弦公式
即sin(x+π/3)=sinxcosπ/3+cosxsinπ/3
=sinx*1/2+cosx√3/2
=1/2sinx+√3/2cosx
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版