a0+0.5a1+.+an/(n+1)=0,证明f(x)=a0+a1x+..+anx^n在(0,1)内至少有1个零根
同济高数第六版第三章总习题第六题
人气:150 ℃ 时间:2020-06-02 10:13:05
解答
证明:
记g(x)=a0x+1/2a1x^2+...+1/(n+1)anx^(n+1)
由初等函数性可知g(x)在[0,1]连续,在(0,1)可导
且g(0)=g(1)=0
由罗尔定理知,
至少存在一点θ∈(0,1),使得
g'(θ)=0
即g'(θ)=f(θ)=0
证毕.
推荐
- 多项式F(X)=a0+a1x+a2x^2+...+anx^n,证明:F(X)=0有n+1个不同根,则F(X)恒等于0
- 设a0+a1 /2+.+an /(n+1)=0 证明多项式f(x)=a0+a1x+.+anx^n在(0,1)内至少有一个零点
- 设a0+a1/2+a2/3+...+an/(n+1)=0,试证:在(0,1)内至少存在一个x满足a0+a1x+a2x^2+...+anx^n=0
- 设a0+a1/2+...+an/(n+1)=0,证明多项式f(x)=a0+a1x+...+anx^n在(0,1)内至少有一个零点.
- Pn(x)=a0+a1x+a2X^2+……+anx^n 在[a,b]上有n个不同的实根,证明Pn'(x)=0的所有实根均在(a,b)内
- 用函数观点看一元二次方程 1、 二次函数y= -x2+4x的值为2,求自变量x的值, 可以看作是解一元二次方程____
- 一个长方形,宽是6厘米,如果宽增加4厘米,面积就增加56厘米2,原来长方形的面积是多少?
- 英美法资产阶级革命的成果,并逐一说明其作用
猜你喜欢