> 数学 >
已知数列【An】、【Bn】满足:a1=1/4,An+Bn=1,B(n+1)=Bn/((1-An)(1+An))
1) B1 B2 B3 B4
2)数列【Bn】的通项公式
3)Sn=A1A2+A2A3+A3A4+...+AnA(n+1),求实数A为何值时4ASn
人气:130 ℃ 时间:2019-09-22 08:32:01
解答
B1=3/4 B2=4/5 B3=5/6 B4=6/7
Bn=(n+2)/(n+3) 数学归纳法 因为1-An=Bn 1-Bn=An 所以B(n+1)=1/(2-Bn)易证
易推出An=1/(n+3) 裂项相消得出Sn=1/4-1/(n+4)=n/(4(n+4))
带入不等式得出A小于((n+2)(n+4))/((n+3)n)
右边打开再分离 等于1+3/(n+3)+8/((n+3)n) 它的最小值为n无穷大时 即1
所以A=1即可满足条件
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版