已知函数f(x)=x^3-3ax(a∈R),设h(x)=/f(x)/,x∈【-1,1】,求h(x)的最大值F(a)的解析式
人气:269 ℃ 时间:2019-11-05 03:57:20
解答
可以看出函数f(x)为奇函数,f(-x)=-f(x),则|f(x)|=|f(-x)|,所以h(x)为偶函数.对f(x)=x^3-3ax求导,f(x)'=3x^2-3a当a≤0,f(x)'≥0,f(x)在[-1,1]上单调递增,所以F(a)=|f(1)|=|1-3a|=1-3a当a>1,在[-1,1]上,f(x)'>0,f(x)单...
推荐
猜你喜欢
- 采蒲台的苇 中四十多岁的男子牺牲后,作者突出描写他的血,有什么作用
- 做个好梦英语口语怎么说
- 唱歌跳舞用英语怎么说
- 2,8,18,32,52的规律
- 已知∠AOB=90°,OC是它的一条三等分线,则∠AOC等于( )
- look at the pictures and answer the question.
- 3.饲养场养鸡、鸭、鹅的只数比是4:3:2,这个饲养场养的鸡比鹅多240只,这个饲养场共养鸡、鸭、鹅各多少
- 找出错误 please write down it