> 数学 >
求初值:dy/dx+y/x=x+1/x,当x=2,y=3
人气:275 ℃ 时间:2020-01-30 08:46:30
解答
∵dy/dx+y/x=x+1/x==>xdy/dx+y=x^2+1==>xdy+ydx=(x^2+1)dx==>d(xy)=(x^2+1)dx==>xy=x^3/3+x+C (C是常数)∴原方程的通解是y=x^2/3+1+C/x∵当x=2时,y=3∴C=4/3故所求特解是y=x^2/3+1+4/(3x).
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版