| a |
| b |
| b |
| a |
由余弦定理可得,
| a2+b2 |
| ab |
| a2+b2−c2 |
| 2ab |
∴a2+b2=
| 3c2 |
| 2 |
则
| tanC |
| tanA |
| tanC |
| tanB |
| cosAsinC |
| cosCsinA |
| cosBsinC |
| cosCsinB |
| sinC |
| cosC |
| cosA |
| sinA |
| cosB |
| sinB |
=
| sinC |
| cosC |
| sinBcosA+sinAcosB |
| sinAsinB |
| sin2C |
| sinAsinBcosC |
| c2 |
| abcosC |
=
| c2 |
| ab |
| 2ab |
| a2+b2−c2 |
| 2c2 | ||
|
故答案为:4
| a |
| b |
| b |
| a |
| tanC |
| tanA |
| tanC |
| tanB |
| a |
| b |
| b |
| a |
| a2+b2 |
| ab |
| a2+b2−c2 |
| 2ab |
| 3c2 |
| 2 |
| tanC |
| tanA |
| tanC |
| tanB |
| cosAsinC |
| cosCsinA |
| cosBsinC |
| cosCsinB |
| sinC |
| cosC |
| cosA |
| sinA |
| cosB |
| sinB |
| sinC |
| cosC |
| sinBcosA+sinAcosB |
| sinAsinB |
| sin2C |
| sinAsinBcosC |
| c2 |
| abcosC |
| c2 |
| ab |
| 2ab |
| a2+b2−c2 |
| 2c2 | ||
|