a |
b |
b |
a |
由余弦定理可得,
a2+b2 |
ab |
a2+b2−c2 |
2ab |
∴a2+b2=
3c2 |
2 |
则
tanC |
tanA |
tanC |
tanB |
cosAsinC |
cosCsinA |
cosBsinC |
cosCsinB |
sinC |
cosC |
cosA |
sinA |
cosB |
sinB |
=
sinC |
cosC |
sinBcosA+sinAcosB |
sinAsinB |
sin2C |
sinAsinBcosC |
c2 |
abcosC |
=
c2 |
ab |
2ab |
a2+b2−c2 |
2c2 | ||
|
故答案为:4
a |
b |
b |
a |
tanC |
tanA |
tanC |
tanB |
a |
b |
b |
a |
a2+b2 |
ab |
a2+b2−c2 |
2ab |
3c2 |
2 |
tanC |
tanA |
tanC |
tanB |
cosAsinC |
cosCsinA |
cosBsinC |
cosCsinB |
sinC |
cosC |
cosA |
sinA |
cosB |
sinB |
sinC |
cosC |
sinBcosA+sinAcosB |
sinAsinB |
sin2C |
sinAsinBcosC |
c2 |
abcosC |
c2 |
ab |
2ab |
a2+b2−c2 |
2c2 | ||
|