已知数列{an}的前n项和为Sn,且-1,Sn,an+1成等差数列,n属于N*,a1=1,函数f(x)=log3X.
1)求数列{an}的通项公式;
2)设数列{bn}满足bn=(n+3)[f(an)+2]分之1,求数列{bn}的前n项和Tn.
人气:100 ℃ 时间:2019-08-21 20:31:53
解答
1.由已知2Sn=a(n+1)-1
则2S(n-1)=an-1
故2an=2S(n1+)-2Sn=a(n+1)-an
a(n+1)=3an
所以{an}为公比是3的等比数列
an=a1*3^(n-1)=3^(n-1)
2.bn=1/{(n+3)[f(an)+2)]}=1/(n+3)(n-1+2)=1/(n+1)(n+3)=(1/2)[1/(n+1)-1/(n+3)]
Tn=(1/2)(1/2-1/4)+(1/2)(1/3-1/5)+(1/2)(1/4-1/6)+...+(1/2)[1/(n+1)-1/(n+3)]
=(1/2)[1/2+1/3-1/(n+2)-1/(n+3)]
=5/12-(2n+5)/[2(n+2)(n+3)]
推荐
- 已知数列an前N项和为sn,点(n,sn)都在函数f(x)=2x^2-x上,设bn=sn/(n+p),且数列bn是等差数列,求P
- 已知等差数列{an}满足log4(an-1)=n,函数f(x)=x^2-4x+4,设数列{bn}的前n项和Sn=f(n).(1)求数列
- 已知等差数列an的前n项和为sn,点(n,sn)(n∈n*)在函数f(x)=2^x-1图像上,则数列﹛1/an﹜前n项和tn=
- 已知函数f(x)=x^2-2x,设数列{An}的前n项和Sn=f(n),令Bn=(a2+a4+…+a2n)/n,证明数列{Bn}是等差数列
- 等差数列{an}前n项的和为Sn,已知对任意的n∈N*,点(n,Sn)在二次函数f(x)=x2+c图象上,则c=_,an=_.
- 设矩阵A=(2 2 1,3 1 5,3 2 3),求A的负一次方
- 已知a,b是方程x-4x+m=0的两个根,b,c是方程x-8x+5m=0的两个根,则m的值为?
- 3(x+4)=9x+6的解
猜你喜欢