给定常数c>0,定义函数f(x)=2|x+c+4|-|x+c|.数列a1,a2,a3,…满足an+1=f(an),n∈N*.
(1)若a1=-c-2,求a2及a3;
(2)求证:对任意n∈N*,an+1-an≥c;
(3)是否存在a1,使得a1,a2,…,an,…成等差数列?若存在,求出所有这样的a1;若不存在,说明理由.
人气:484 ℃ 时间:2019-12-14 12:14:55
解答
(1)a2=f(a1)=f(-c-2)=2|-c-2+c+4|-|-c-2+c|=4-2=2,a3=f(a2)=f(2)=2|2+c+4|-|2+c|=2(6+c)-(c+2)=10+c.(2)由已知可得f(x)=x+c+8,x≥−c3x+3c+8,−c−4≤x<−c−x−c−8,x<−c−4当an≥-c时,...
推荐
- 1.已知定义在R上的函数F(X)对于任意的X,Y∈R,都有F(X+Y)+F(X-Y)=2F(X)F(Y),且F(0)≠0.若存在常数C,使得
- 定义在[-1,1]上的函数f(x)=x^3-x+c(c为常数).求f(x)的最值
- 定义在[-1,1]上的函数f(x)=x^3-x+c(c为常数)
- 定义R上的函数满足f(-x)=1/f(x)>0,又g(x)=f(x)+c(c为常数)在[a,b]上是单调增函数证明g(x)在[-b,-a]的单调
- 定义在实数集上的函数f(x),对任意x,y∈R,有f(x+y)+f(x-y)=2f(x)f(y):若存在常数c,使f(c/2)=0
- 空气污染怎么治理呢
- 《道德经》读后感 2000字
- a b为正实数1/a+1/b 与1/a+b大小关系及解析
猜你喜欢