已知函数f(x)=2sin(x-π/3)+1,若函数y=f(kx)(k>0)的周期为2π/3,当x∈[0,π/3]时,方程f(kx)=m恰有两个不同的解,求实数m的取值范围?
人气:474 ℃ 时间:2020-01-29 06:58:07
解答
f(kx)=2sin(kx-π/3)+1首先周期t=2π/3 因为 t=2π/k=2π/3所以 k=3 因为x∈[0,π/3] 所以 kx∈[0,π]
记kx=n 故f(n)=2sin(n-π/3)+1 记u=n-π/3∈[-π/3,2π/3] 有两个不同解就是y=m与之有两个交点 根据函数图像可知 m∈[根号3+1,3]
推荐
- 函数f(x)=lgkx−1x−1(k∈R,且k>0). (1)求函数的定义域. (2)若函数f(x)在[10,+∞)上单调递增,求k的取值范围.
- 已知函数f(x)=2sin(kx/5+π/3)(k≠0)
- 函数f(x)=2sin(x-π/3)+1,若函数y=f(kx)(k>0)的周期为2π/3,当x∈[0,π/3]时,方程f(kx)=m恰有两个不
- 函数f(x)=2sin(kx+pai/3)的周期为T,且T属于(1,3) 则正整数k是
- 已知函数f(x)=2sin(kx/3+π/4),如果使f(x)的周期在(2/3,3/4)内,求正整数k的值
- 图穷匕见的故事概括200-300字
- 养鸡场卖出一批鸡肉,第一次卖出鸡肉总数的35%,第二次卖出鸡肉总数的25%
- 公鸡用英语读到底是cock 还是rooster呢?
猜你喜欢