设P点是椭圆M上的一点,EF为园N:x^2+(y-2)^2=1的任意一条直径(EF为直径的两个端点),求向量PE点乘向量PF的最大值 椭圆方程为 x^2/6+y^2/2=1
人气:317 ℃ 时间:2019-09-04 08:09:27
解答
椭圆x^2/6+y^2/2=1
右焦点(2,0)
园N:x^2+(y-2)^2=1由圆的参数方程设
点E(2+cosα.sinα) ,F(2-cosα,-sinα)
P(x,y),y^2=2-x^2/3,x∈ [-√6,√6]
u=向量PE点乘向量PF
=(2+cosα-x,sinα-y)*(2-cosα-x,-sinα-y)
=(2+cosα-x)(2-cosα-x)+(sinα-y)(-sinα-y)
= (2-x)^2-cos²ā+y^2-sin²α
= (2-x)^2+y^2-1
= x^2-4x+5-x^2/3=2/3 *x^2 -4x +5
=2/3(x-3)^2-1
∴x=3,u取 最小值-1
x=-√6 u取 最大值9+4√6
向量PE点乘向量PF的最大值是9+4√6
推荐
猜你喜欢
- 如图,∠AOB是直角,OD平分∠BOC,OE平分∠AOC,求∠EOD的度数.
- rimming 和 vanilla
- 1/x=2是不是一元一次方程?
- 一罐啤酒多少热量相当于几个馒头
- 已知{an},{bn}都是等比数列,它们的前n项和分别为Sn,Tn,且Sn/Tn=(3的n次方+1)/4,对n属于N心恒成立,则a(n+1)/b(n+1)= A.3的n次方 B.4的n次方 C.3的n次方或4的n次方 D.(4/3)的n次方
- 函数f(x)=sinx+2|sinx|(x∈[0,2π)的图象与直线y=k有且仅有两个不同的交点,则k的取值范围是( ) A.[-1,1] B.(1,3) C.(-1,0)∪(0,3) D.[1,3]
- 小明3天看了一本书的4分之一,平均每天看了一本书的几分之几,七天能看完这本书的几分之几
- 放在光滑的水平面上的一辆小车的长度为L,质量等于M.在车的一端站一个人,人的质量等于m,开始时人和车都保持静止.当人从车的一端走到车的另一端时,小车后退的距离为