四棱锥P-ABCD的底面是边长为2的菱形,∠ABC=60,侧棱PA垂直于平面ABCD
PC与平面ABCD所成角的大小为arctan2 M为PA中点
1 求四棱锥P-ABCD的体积
2 求异面直线BM与PC所成角的大小 结果用反三角表示
人气:181 ℃ 时间:2019-08-19 02:14:17
解答
tanPCA=2,且AB=BC=CD=DA=AC=2,所以PA=4,且PA垂直于平面ABCD,所以体积=(1/3)*s*h=(1/3)*2倍根号3*4=(8倍根号3)/3
设AC交BD于N,由于M,N分别为PA,AC中点,所以MN平行于PC,所以BM与PC所成角的大小就是角BMN
PA垂直于面ABCD,所以PA垂直于BD,又BD垂直于AC,所以BD垂直于面PAC,所以BD垂直于MN,MN=(1/2)*PC=(1/2)*根号下(2方+4方)=根号5,BN=根号3,所以tan角BMN=根号3/根号5,所以BM与PC所成角的大小=arctan[(根号15)/5]
推荐
- 已知四棱锥p-abcd中,底面abcd为菱形pa⊥平面abcd,∠abc=60度,e,f分别是bc,pc的中点
- 如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,AP=AB=2,E在PD上,且PE=2ED,F是PC的中点, (1)证明:平面PBD⊥平面PAC;(2)求证:BF∥平面ACE;(3)求三棱锥D-BCF
- 如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中
- 如图,四棱锥P-ABCD的底面是边长为a的菱形,∠ABC=60°,PC⊥平面ABCD,PC=a,E为PA中点, (1)求证:平面EDB⊥平面ABCD; (2)求点E到平面PBC的距离.
- 在四棱锥P -ABCD中,底面ABCD是菱形,角ABC=60度,PA垂直平面ABCD,点M,N分别为BC,PA的中点
- 填空:(英语) 1:( )词修饰名词.( )词修饰动词或形容词.
- 求一篇英语作文,保护濒危动物,
- 若xy=1,则代数式X^4的倒数+4Y^4的倒数的最小值是多少
猜你喜欢