> 数学 >
求证明cosxcos2xcos4.cos2^(n-1) x= sin 2^n x / 2^n sinx
人气:404 ℃ 时间:2020-04-20 07:37:39
解答
cosxcos2xcos4.cos2^(n-1) x
=2sinxcosxcos2xcos4.cos2^(n-1) x/(2sinx)
=sin2xcos2xcos4.cos2^(n-1) x/(2sinx)
=sin4xcos4x.cos2^(n-1) x/(2^2sinx)
=sin2^(n-1) xcos2^(n-1) x/[2^(n-1)sinx]
=sin2^nx/(2^nsinx)
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版