∵f′(x)=3−4x+
1 |
x |
−4x2+3x+1 |
x |
−(4x+1)(x−1) |
x |
∴由f′(x)>0,得0<x<1;由f′(x)<0,得x>1;
∴f(x)在(0,1)上是增函数,在(1,+∞)上是减函数.
(2)∵f′(x)=3a−4x+
1 |
x |
若函数f(x)在区间[1,2]上为单调函数,
则f′(x)≥0,或f′(x)≤0在区间[1,2]上恒成立.
∴3a−4x+
1 |
x |
1 |
x |
即3a≥4x−
1 |
x |
1 |
x |
设h(x)=4x−
1 |
x |
∵h′(x)=4+
1 |
x2 |
∴h(x)=4x−
1 |
x |
h(x)max=h(2)=
15 |
2 |
∴只需3a≥
15 |
2 |
∴a≥
5 |
2 |