| AB |
| BC |
| AD |
| DC |
得
| AB+AD |
| BC+DC |
| AD |
| DC |
| 30 |
| 15 |
| 2 |
| 1 |
设AD=2k(k>0),DC=k,
则AB=AC=3k,AB+AD=5k=30,
解得k=6,
∴AB=18.
(2)当AB+AD=15时,由
| AB |
| BC |
| AD |
| DC |
得
| AD |
| DC |
| 1 |
| 2 |
设AD=k(k>0),DC=2k,
则AB=AC=3k,AB+AD=4k=15,
解得k=
| 15 |
| 4 |
∴AB=
| 45 |
| 4 |
都符合三角形的三边关系.
∴AB=18或
| 45 |
| 4 |
| AB |
| BC |
| AD |
| DC |

| AB |
| BC |
| AD |
| DC |
| AB+AD |
| BC+DC |
| AD |
| DC |
| 30 |
| 15 |
| 2 |
| 1 |
| AB |
| BC |
| AD |
| DC |
| AD |
| DC |
| 1 |
| 2 |
| 15 |
| 4 |
| 45 |
| 4 |
| 45 |
| 4 |