
解法一:
S△ABC=S梯形BB'C'C-S△ABB'-S△ACC'
=
1 |
2 |
1 |
2 |
1 |
2 |
=
1 |
2 |
=
1 |
2 |
又a≤0,
故当a=0时,(S△ABC)min=
1 |
2 |
解法二:
过A作L平行于y轴交BC于D,由于A是B'C'中点
∴D是BC中点
∴S△ABC=S△ADC+S△ADB
=
1 |
2 |
1 |
2 |
∵|AD|=
yB+yC |
2 |
1 |
2 |
=
1 |
2 |
又a≤0,
故当a=0时,(S△ABC)min=
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
yB+yC |
2 |
1 |
2 |
1 |
2 |
1 |
2 |