高等代数计算题:已经知道3阶实对称矩阵A的特征值是λ1=1,λ2=-1,λ3=0,
对应的特征向量分别是α1=(1,a,1),α3=(a,a+1,1)
求矩阵A
越详细越好,算错不要紧,
人气:456 ℃ 时间:2020-05-20 21:10:17
解答
由于实对称矩阵的属于不同特征值的特征向量正交
所以 =a+a(a+1)+1=0
所以 a = -1,α1=(1,-1,1)^T,α3=(-1,0,1)^T
又若 α2=(x1,x2,x3)^T,则
=x1-x2+x3=0
=-x1+x3=0
得 α2=(1,2,1)^T
令 P=(α1,α2,α3)=
1 -1 1
-1 0 2
1 1 1
则P可逆,且 P^-1AP=diag(1,-1,0)
所以 A = Pdiag(1,-1,0)P^-1 =
-1/6 -1/3 5/6
-1/3 1/3 -1/3
5/6 -1/3 -1/6
推荐
- 高等代数计算题:已经知道3阶实对称矩阵A的特征值是λ1=8,λ2=λ3=2.对应λ1=8的特征向量是α1=(1,k,1)
- 3阶实对称矩阵A的三个特征值为2,5,5,A的属于特征值2的特征向量是(1,1,1)
- 设三阶实对称矩阵A的特征值为-1,1,1.与特征值-1对应的特征向量X=(-1,1,1),求A
- 实对称矩阵求特征值问题 特征值如何求
- 三阶实对称矩阵,R(A)=2,A^2+2A=0,求特征值
- 专营店老板进甲乙两件服装甲服的成本比乙服装低100元又决定将甲服装按50%的利润定价乙按40%利润定价在实际出售时应顾客要求两件均按9折出售这样共获利148元甲乙成本多少
- (3a-2)(a-1)-(a+2)的平方
- 英语翻译
猜你喜欢