> 数学 >
已知f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y),f(2)=1.(1)求证:f(8)=3.
已知f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y),f(2)=1.
(1)求证:f(8)=3.(2)解不等式:f(x)-f(x-2)>3
人气:183 ℃ 时间:2019-10-14 04:18:12
解答
(1)
f(2×2) = f(2) + f(2)
f(4) = 2f(2) = 2
f(4×2) = f(4) + f(2)
f(8) = 2 + 1 = 3
(2)
f(x) - f(x - 2) > 3
因为 定义在(0,+∞)
所以 x > 0 ,x- 2 > 0
所以 x > 2
f(x) - f(x - 2) > 3
f(x) > f(x - 2) + 3
f(x) > f(x - 2) + f(8)
f(x) > f(8x - 16)
因为 f(x)是增函数
所以 x > 8x - 16
所以 x < 16/7
综上:2 < x < 16/7
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版