已知o是△ABC内一点,且OA+2OB+3OC=0(向量) 则△AOB,△AOC,△BOC的面积之比为多少
人气:189 ℃ 时间:2019-08-20 00:55:09
解答
答案:3:2:1
分别延长OB、OC至B’、C‘,使得OB’=2OB,OC‘=3OC
因OA+2OB+3OC=0,即OA+OB’+OC‘=0,所以O为三角形ABC重心(三中线交点)
接下来证明三角形△AOB’,△AOC‘,△B’OC’面积相等:
设BC边上中线为AD,则S△ADB’=S△ADC‘,
在△BOC中亦有S△ODB’=S△ODC‘
所以S△ADB’-S△ODB’=S△ADC‘-S△ODC‘,即S△AOB’=S△AOC‘
同理可证三者两两相等
1.在△AOB’中,B为OB‘边中点,所以S△AOB=S△AOB’/2
2.在△AOC’中,C为OC‘边近O端三等分点,所以S△AOC=S△AOC’/3
3.在△B'OC'中,连BC',B为OB‘边中点,所以S△BOC'=S△B'OC‘/2
在△BOC'中,C为OC‘边近O端三等分点,所以S△BOC=S△BOC'/3=S△B'OC‘/6
因为S△AOB’=S△AOC‘=S△B’OC’
△AOB:△AOC:△BOC=S△AOB’/2:S△AOC’/3:S△B'OC‘/6=3:2:1
推荐
- 已知点O为三角形ABC内一点,满足OA+2OB+3OC=0,求S△AOC:S△AOB:S△BOC
- 设O为△ABC内部一点,若OA向量+2OB向量+3OC向量=0向量,则S△BOC:S△AOC等于?
- 点O在△ABC内,OA+2OB+4OC=0(都是向量)求证S△AOB:S△BOC=4:1.
- 设O是三角形ABC内部 3向量OA+5向量0B+7向量0C=0 求三角形AOC与BOC的面积比
- 点O为△ABC内一点,且向量OA+2向量OB+3向量OC=0,则△AOB,△AOC,△BOC的面积之比等于
- 如图甲,点O是线段AB上一点,C、D两点分别从O、B同时出发,以2cm/s、4cm/s的速度在直线AB上运动,点C在线段OA之间,点D在线段OB之间. (1)设C、D两点同时沿直线AB向左运动t秒时,AC:OD=1:2
- He puts everything good order 中文翻译.
- 在严寒的早晨里,房间的玻璃上会结上一层冰花,问冰花是结在里面才是外面?
猜你喜欢