| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n+1 |
an+1=
| 1 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| 2n+3 |
an+1-an=
| 1 |
| 2n+2 |
| 1 |
| 2n+3 |
| 1 |
| n+1 |
所以{an}对于n为正整数时为单调递减数列,
使不等式
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n+1 |
| 1 |
| 3 |
就是n=1时,a>2007
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 6 |
故答案为:2009.
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n+1 |
| 1 |
| 3 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n+1 |
| 1 |
| n+2 |
| 1 |
| n+3 |
| 1 |
| 2n+3 |
| 1 |
| 2n+2 |
| 1 |
| 2n+3 |
| 1 |
| n+1 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n+1 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 6 |