设f(x)= ∫0-x e^(-y+2y)dy 求∫0-1 [(1-x)^2]f(x)dx
人气:294 ℃ 时间:2019-11-03 00:02:22
解答
是f(x)= ∫0-x e^(-y^2+2y)dy吧
交换积分次序即可
∫[0,1] [(1-x)^2]f(x)dx
=∫[0,1] [(1-x)^2]∫[0,x] e^(-y^2+2y)dydx
=∫[0,1]e^(-y^2+2y)∫[y,1] (1-x)^2dxdy
然后自己先算算吧不理解积分里面还有积分 不应该先把fx求出来么二重积分呀,如果你没学,等学了二重积分再说吧这道题 可以用分部积分做 ...没想到不过谢谢你的回答啦
推荐
猜你喜欢
- 最快的速度成语
- 智者千虑必有一失是什么意思
- 不容易传热的物体叫做什么,如( ))等物体
- 27^1-log(9)(4)=多少,需要分析
- 圆形,直径1.5m,5m.等于几立方?求公式
- 已知向量a=(cos3x/2,sin3x/2),b=(cosx/2,-sinx/2),c=(√3,-1),其中x属于R 当向量a垂直向量b,求x值集合
- 已知6-2x的平方根+y+64的绝对值=0,求(x+y)的2012次方的值
- 为什么北半球看北极星的仰角等于观测点的纬度?