已知An(an,bn)是曲线y=e^x上的点,a1=a,Sn是数列{an}的前n项和,且满足Sn^2=(3n^2)an+S(n-1)^2
已知An(an,bn)是曲线y=e^x上的点,a1=a,Sn是数列{an}的前n项和,且满足Sn^2=3n^2*an+S(n-1)^2,an不等于0,n=2,3,4…
(1)证明:数列{b(n+2)/bn}(n>=2)是常数数列
(2)确定a的取值集合M,使a属于M时,数列{an}是单调递增数列
人气:380 ℃ 时间:2019-08-21 06:33:39
解答
(1)证明:b(n+2)/bn=e^a(n+2)/e^an=e^[a(n+2)-an]要证明{b(n+2)/bn}为常数数列,只需证a(n+2)-an为常数;∵Sn^2=3n^2*an+S(n-1)^2∴Sn^2-S(n-1)^2=[Sn+S(n-1)][Sn-S(n-1)]=[Sn+S(n-1)]*an=3n^2*an∴Sn+S(n-1)=3n^2…...
推荐
- 设数列An的前n项和为Sn,已知a1=a,an+1=Sn+3n设Bn=Sn-3n次方,求数列Bn的通项公式
- 设数列{an}的前n项和为Sn,已知a1=a,an+1=Sn+3^n,n∈N+.设bn=Sn+3n,求数列{bn}的通项公式
- 数列{an}中,a1=1,Sn+1=4an+2设bn=an+1-2an,求证{bn}是等比数列,设cn=an/3n-1,求证cn是等比数列.
- 设数列{an}的前n项和为sn.已知a1=a,an+1=sn-3n,n∈N*,设bn=sn-3n,且bn≠0
- 设数列an的前n项和为Sn,已知a1=1,(2Sn)/n=a(n+1)-1/3n^2-n-2/3
- 求二次积分∫dx∫ xy/√(1+y^3)dy x[0,1] y[x^2,1]
- 为什么What‘s_____supper?要填for?
- 英文这使读者很吃惊
猜你喜欢