如果A是一个反对称矩阵:A'=-A,则对任一个n维向量X,都有X'AX=(X'AX)'.这是为什么呢?
人气:137 ℃ 时间:2020-04-01 16:24:49
解答
是这样子:
根据已知,X 是 n*1 的,A 是 n*n 的,X' 是 1*n 的
X'AX 是一个 1*1 的矩阵,即一个数
它的转置就等于它本身
即有 (X'AX)' = X'AX
再由 (X'AX)' = X'A'X = - X'AX
即得 X'AX = 0.
推荐
猜你喜欢
- 2) Does internet have more advantages or disadvantages?And what are they?
- 对杜小康这个人物来说,"孤独"的含义是什么
- 已知函数f(x)=sinx与g(x)=cosx,x∈﹙0,2π﹚,求不等式f(x)≤g(x)的解集
- No to cloud the water any more 如何翻译
- 帮个忙咯 已知A=2a²-a,B=-5a+1,B=-5a+1 (1)化简:4A-2B-1 (2)当a=-1时,求4A-2B-1的值
- 有一件工艺品质量2千克,体积180cm³,是用金 铜两种金属制成的,求该工艺品中含金 铜各多少千克?
- f(x)在[a,b]内2阶可导,f(x)二阶导数的绝对值小于等于M;有在(a,b)内部去等取得最小值
- 水结冰后体积为什么会变大