如图,在圆O中,AB是直径,CD是一条弦,且CD⊥AB,垂足为点P,连接BC,AD,求证:PC的平方=PA*PB
人气:274 ℃ 时间:2019-08-22 19:57:24
解答
证明:因为CD⊥AB,垂足为点P,且AB是直径
所以pc=pd,且角apc=角bpd=90度 角pac=角pdb 角pbc=角pad
所以pc/pa=pb/pd
即pc*pd=pa*pb
pc*pc=pa*pb
pc^2=pa*pb
推荐
- 如图,CD是⊙O的弦,AB是直径,CD⊥AB,垂足为P,求证:PC2=PA•PB.
- 已知在圆O中,AB是圆O的直径,CD是一条弦,且CD垂直AB于点P.连接BC,AD.求证:PC平方=PA.PB
- 如图,在⊙O中,AB是⊙O的直径,CD是一条弦,且CD⊥AB于点P.连接BC,AD,求证PC2=PA*PB
- 已知如图,在圆O中,AB是圆O的直径,CD是一条弦,且CD垂直AB于点P,连接BC,AD.求证PC^2=PA*PB 怎么解诶
- 已知,如图,圆O的弦AB,CD相交于P,求证PA*PB=PC*PD
- accord、treaty 和convention的区别是什么?
- 用加减法解二元一次方程组:
- 双缩脲鉴定蛋白质或多肽的存在
猜你喜欢