已知函数f(x)=ax+ka-x,其中a>0且a≠1,k为常数,若f(x)在R上既是奇函数,又是减函数,则a+k的取值范围是______.
人气:255 ℃ 时间:2019-12-12 14:12:38
解答
∵f(x)在R上是奇函数,
∴f(0)=0,即f(0)=1+k,
∴k=-1;
∴f(x)=ax-a-x,
又f(x)=ax-a-x是减函数,
∴f′(x)<0,即axlna+a-xlna=(ax+a-x)lna<0,由于ax+a-x>0,
∴lna<0,
∴0<a<1.
∴a+k=a-1∈(-1,0).
故答案为:(-1,0).
推荐
猜你喜欢
- You can do everything,if it's important enough for you to do.
- 成语接龙,人一己百.百()()()
- 我们来做个轻松的运动放松一下英语
- 把关于x的方程(2x-1)(x+3)=x^2+3化成ax^+bx+c=0的形式,b^2-4ac=______,方程的根是_______.
- 已知两个数的最大公因数是8,这两个数共有几个公因数?
- 圆周率π计算出来有何意义
- 若方程2ax*x-x-1=0 在区间(0,1)内恰好有一个解,则a的取值范围(
- 老师说;一半的学生在学数学,' 四分之一的学生在学音乐,七分之一学生在念外语,还剩不足6名学