> 其他 >
求微分方程的特解
求微分方程cosydx+[1+e^[-(x)]sinydy=0,y(0)=π/4 的特解
分离变量 tanydy=-dx/[1+e^[-(x)]
即 (1/cosy)d(cosy)=1/(1+e^x)d(e^x) 这一步不懂,主要是等号右边
两边积分 ln|cosy|=ln[1+e^[-(x)]+lnC' 还是等号右边弄不懂
∴cosy=C(1+e^x) 这步也不懂
后边的就不写了
人气:297 ℃ 时间:2020-06-11 09:47:37
解答
我只看了你的第一问就不想看下去了..
这都是微积分的基本内容啊;你既然都学到常微分方程了,不应该不会啊
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版