已知函数f(x)=-x²+ax-lnx(a∈R),当函数f(x)在(1/2,2)上单调是,求a的取值范围.
如题,
人气:318 ℃ 时间:2019-09-17 20:19:39
解答
要判断单调性,利用函数的导数
f'(x)=-2x+a-1/x
由于f(x)在(1/2,2)上单调
所以f'(x)在(1/2,2)上恒为非正或恒为非负
那么,我们需要找到f'(x)=-2x+a-1/x在(1/2,2)上的值域
可以利用均值不等式或者再求导来解决,这里再求导
f''(x)=-2+1/x²
可以看出,f''(1/2)>0然后f'‘(√2/2)=0,之后<0
即f'(x)先增加,在√2/2达到最大,然后再减小
所以f'(x)最大值为f'(√2/2)=a-2√2
f'(1/2)=a-3,f'(2)=a-9/2所以f'(x)最小值为f'(2)=a-9/2
所以f'(x)恒非负的话,a-9/2≥0
f'(x)恒非正的话,a-2√2≤0
所以a的取值范围为a≥9/2或者a≤2√2
推荐
- 已知f(x)=lnx+1/x+ax(a∈R),求f(x)在[2,+∞),上是单调函数时a的取值范围
- f(x)=x²+ax+lnx在(1/2,正无穷)是曾函数,则a的取值范围
- 已知函数f(x)=(x+1)lnx-x+1,若xf(x)≤x²+ax+1恒成立,求a的取值范围.
- 已知函数f(x)=lnx-ax²/2+x.a属于R.求函数f(x)的单调区间
- 已知函数f(x)=(x+1)lnx-x+1. (Ⅰ)若xf′(x)≤x2+ax+1,求a的取值范围; (Ⅱ)证明:(x-1)f(x)≥0.
- 向量a=(5,12),向量a+向量b=(8,8)则向量a与向量b的夹角的余弦值为多少?
- 被称为中国国宝级四大珍稀动物分别是那四个
- 求过氧化氢的质量分数
猜你喜欢