动点P与A(2,4)的连线的斜率比它与 点B(-2,-4) 连线的斜率大4,则点P的轨迹方程是什么?
1.动点P与A(2,4)的连线的斜率比它与 点B(-2,-4) 连线的斜率大4,则点P的轨迹方程是什么?(我算出来是x^2+2x-y-4=0?)
2.(x^-1)(y^-4)=0( # 型的么?)
(x^2-1)^2+(y^-1)=0 的图怎么画?
人气:299 ℃ 时间:2019-10-10 01:13:24
解答
设P(x,y),则
(y-4)/(x-2)-(y+4)/(x+2)=4
整理:y=x²+2x-4
这不就是一个二次函数吗?这个函数图象很好画吧.
推荐
- 已知动点P与平面上两定点A(√2,0),B(√2,0)连线的斜率的积为定值-1/2 求动点P的轨迹方程.
- 平面内动点P(x,y)与A(-2,0),B(2,0)两点连线的斜率之积为 14,则动点P的轨迹方程为( ) A.x2+4y2=4 B.x2-4y2=4 C.x2+4y2=4(x≠±2) D.x2-4y2=4(x≠±2)
- 一动点p和原点的距离,等于它和原点连线的斜率,求这动点的轨迹方程
- 求到点A(5,0)B(-5,0)连线斜率之积为定植-9/25的动点P的轨迹方程
- 与点A(-1,0)和点B(1,0)的连线的斜率之积为-1的动点P的轨迹方程是
- 请问房地产中建筑面积,销售面积和可销售面积的概念、区别是什么?
- 用文言文写自传100字的
- never后加动词原形吗
猜你喜欢