求可分离变量微分方程满足所给初始条件的特解
Y'=e的2X-Y次方;X=0,Y=0.
人气:333 ℃ 时间:2020-02-03 07:30:48
解答
∵y'=e^(2x-y) ==>e^ydy=e^(2x)dx
==>e^y=e^(2x)/2+C (C是积分常数)
又当x=0时,y=0
∴ 1=1/2+C ==>C=1/2
故满足所给初始条件的特解e^y=[e^(2x)+1]/2.
推荐
猜你喜欢
- The farmer soon came back to get his shoes,but when he put his foot into one of his shoes and felt something hard,he fou
- 求y=lnx在点M(e,1)的切线方程和法线方程.
- It feel like three
- 骨骼不含钙有没有无机盐
- 硫酸铵和硫酸铁铵的ph值大小
- A.refresh B.renew C.stimulate D.encourage
- 如图所示,在△ABC中,AB=AC,点MN分别在BC所在的直线上,且AM=AN,BM与CN相等吗?两种解答方法.
- 巳知电压为380v功率45千瓦,用多大的空气开关,线的大少,是怎么算的!请高手多指教谢谢了.