O为△ABC所在平面内一点,且[OA]^2+[BC]^2=[OB]^2+[CA]^2=[OC]^2+[AB]^2,试证:点O是△ABC的垂心
人气:307 ℃ 时间:2020-03-28 22:15:43
解答
只证明OA^2+BC^2=OB^2+AC^2
另一半同理可得
假设AO交BC于D,BO交AC于E
BC^2=(BF+CF)^2=BF^2+CF^2+2BFCF
=OB^2+OC^2-2OF^2+2BFCF=OB^2+OC^2-2OC^2+2CF^2+2BFCF=OB^2-OC^2+2(CF*BC)
OA^2+BC^2=OA^2+OB^2-OC^2+2(CF*BC)
同理可证
OB^2+AC^2=OA^2+OB^2-OC^2+2(CD*CA)
所以等价于要证明CF*BC=CD*CA
因为△AFC∽△BDC所以 CF/CD=AC/BC
即原命题成立
推荐
猜你喜欢
- The farmer soon came back to get his shoes,but when he put his foot into one of his shoes and felt something hard,he fou
- 求y=lnx在点M(e,1)的切线方程和法线方程.
- It feel like three
- 骨骼不含钙有没有无机盐
- 硫酸铵和硫酸铁铵的ph值大小
- A.refresh B.renew C.stimulate D.encourage
- 如图所示,在△ABC中,AB=AC,点MN分别在BC所在的直线上,且AM=AN,BM与CN相等吗?两种解答方法.
- 巳知电压为380v功率45千瓦,用多大的空气开关,线的大少,是怎么算的!请高手多指教谢谢了.