O为△ABC所在平面内一点,且[OA]^2+[BC]^2=[OB]^2+[CA]^2=[OC]^2+[AB]^2,试证:点O是△ABC的垂心
人气:486 ℃ 时间:2020-03-28 22:15:43
解答
只证明OA^2+BC^2=OB^2+AC^2
另一半同理可得
假设AO交BC于D,BO交AC于E
BC^2=(BF+CF)^2=BF^2+CF^2+2BFCF
=OB^2+OC^2-2OF^2+2BFCF=OB^2+OC^2-2OC^2+2CF^2+2BFCF=OB^2-OC^2+2(CF*BC)
OA^2+BC^2=OA^2+OB^2-OC^2+2(CF*BC)
同理可证
OB^2+AC^2=OA^2+OB^2-OC^2+2(CD*CA)
所以等价于要证明CF*BC=CD*CA
因为△AFC∽△BDC所以 CF/CD=AC/BC
即原命题成立
推荐
- 一道高一数学:在同一平面上有△ABC及一点O满足关系式:OA^2+BC^2=OB^2+CA^2=OC^2+AB^2,这O为△ABC的:
- 在同一平面上有三角形ABC及一点O满足关系式:(向量)OA^2+BC^2=OB^2+CA^2=OC^2+AB^2,则O是什么心
- 已知点O为三角形ABC所在平面上一点,且向量OA平方+向量BC平方=向量OB平方+向量CA平方=向量OC平方+向量AB平方,则O一定世三角形ABC的?
- 已知o为三角形abc所在平面内一点,且满足|oa|方+|bc|方=|ob|方+|ca|方=|oc|方+|ab|方,求证:ab垂直oc
- 点O在三角形ABC的平面内求证向量OA×向量BC+向量OB×向量CA+向量OC×向量AB=0
- 翻译:他逐渐意识到他对科技非常的感兴趣
- 如图,有8个完全一样长方形拼成一个大长方形,面积为480平方厘米,大长方形的周长是多少厘米?
- 太阳光从月球到达地球的时间是1.28s,月球到地球之间的距离是多少?
猜你喜欢