在同一平面上有三角形ABC及一点O满足关系式:(向量)OA^2+BC^2=OB^2+CA^2=OC^2+AB^2,则O是什么心
人气:432 ℃ 时间:2019-08-26 06:45:37
解答
垂心
(向量)OA^2+BC^2=OB^2+CA^2
OA^2-OB^2=CA^2-BC^2
(OA+OB)(OA-OB)=(CA+BC)(CA-BC)
(OA+OB)*BA=BA(CA-BC)
BA(OA+OB-CA+BC)=0
BA(2OC)=0
即(BA)(OC)=0
因为BA、OC不为0
所以只有cosa=0
a=90度
即OC垂直BA
同理OA垂直BC
OB垂直AC
所以O为垂心
推荐
- 已知o是三角形abc所在平面内一点,d为bc中点,且2向量oa+向量ob+向量oc=o,
- 已知点O为三角形ABC所在平面上一点,且向量OA平方+向量BC平方=向量OB平方+向量CA平方=向量OC平方+向量AB平方,则O一定世三角形ABC的?
- 若O是三角形ABC 内心,则|AB|向量OC+|BC|向量OA+|CA|向量OB=____.
- O为三角形ABC所在的平面内一点,且满足向量OA+2向量OB+3向量OC=0,则三角形AOC与三角形BOC的面积之比为2 :1,这是为什么?
- O为三角形ABC所在平面内一点,向量OA^2 +向量BC^2=向量OB^2+向量CA^2=向量OC^2+向量AB^2,则O为什么心
- why are the western foods so popular in china
- 谦谦玉珏是什么意思
- 氯化铍的电子式?
猜你喜欢
- 史密斯一家在干什么?『翻译』
- 加标点,使句子意思与括号中的要求相符.
- 西瓜经营户以2元每千克的价格购进一批小西瓜,以3元每千克的价格出售,每天可出售200千克为了促销,该营销
- 星形接法改为三角形接法功率;电流等有什么变化?
- 英语翻译
- 已知函数f(x)=x^2+x-ln(x+a)+3b在x=0出取得极值0.
- 知道上善若水.水善利万物,而不争;处众人之所恶,居善地,心善渊,与善仁,言善信,政善
- 任意一个平行四边形都能分成两个相同的三角形_(判断对错)