> 数学 >
已知0<=a<=兀,0<=b<=兀/4,且a+b=2兀/3
求∶y={[1-cos(兀-2a)]/[(cota/2)-(tana/2)]}-[cos(兀/4-b)]^2的最大值,并求出相应的a、b的值.
人气:245 ℃ 时间:2020-10-02 00:56:32
解答
y={[1-cos(兀-2a)]/[(cota/2)-(tana/2)]}-[cos(兀/4-b)]^2=[1+cos(2a)]/【{[cos(a/2)]^2-[sin(a/2)]^2}/[cos(a/2)sin(a/2)]】-[√2/2(cosb+sinb)]^2=2(cosa)^2/[cosa/(1/2sina)]-1/2(1+sin2b)=sinacosa-1/2sin2b-1/2...
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版