设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x),当x∈[0,2]时,f(x)=2x-x^2
(1)当x∈[2,4]时,求f(x)的解析式.
(2)计算f(0)+f(1)+f(2)+·········+f(2012)
一定要具体.
人气:425 ℃ 时间:2019-08-19 00:43:44
解答
因为 f(x+2)=-f(x),所以 f(x+4) = -f(x+2)
所以 f(x) = f(x+4)
则f(x) 的周期为4.
x∈[-2,0] 时,-x∈[0,2],
则f(-x)=2(-x)-(-x)^2=-2x- x^2,
因为f(x)是奇函数,
所以f(x)=-f(-x)=-[ -2x- x^2]= 2x+x^2 (x∈[-2,0] 时).
当x∈[2,4]时,x-4∈[-2,0],
所以f(x-4)=2(x-4)+(x-4)^2
因为f(x) 的周期为4,
所以f(x)=f(x-4)= 2(x-4)+(x-4)^2
=x^2-6x+8(x∈[2,4]时).
当x∈[0,2]时,f(x)=2x-x^2
当x∈[2,4]时,f(x)= =x^2-6x+8
所以f(0)=0,f(1)=1,f(2)=0,f(3)=-1.
f(0)+f(1)+f(2)+f(3)=0.
因为f(x) 的周期为4,
所以f(0)+f(1)+f(2)+……+f(2012)
= [f(0)+f(1)+f(2)+f(3)]+[ f(4)+f(5)+f(6)+f(7)]+……+[ f(2008)+f(2009)+f(2010)+f(2011)]+ f(2012)
=0+0+……+0+ f(2012)
= f(0)
=0.
推荐
- 设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x)
- 设f(x)是定义域R上的奇函数,且对任意实数x,恒有f(x+2)=
- 设f(x)是定义在R上的奇函数,且对任意实数x恒满足f(2+x)=-f(x),当x∈[0,2]时,f(x)=2x-x²
- 设f(x)是定义在R上的奇函数,且对任意实数x恒满足f(x+2)=-f(x),当x属于[-2,0]时,f(x)=2x+x^2
- 设f(x)是定义在R上的奇函数,且对任意实数x恒有f(x+2)=f(x)求f(1)
- 3.一个圆柱形蛋糕包装盒的底面直径是是40厘米,高是10厘米,用彩绳将它捆扎(如下图),打结处在圆心,长30厘米,所用的彩绳长多少厘米?若在侧面贴上商标,商标的面积是多少平方厘米?
- 《湖心亭看雪》写出了雪后西湖之景的( )的特点;《满井游记》则表现了满井早春( )的特点
- Will you ___________________ the children for me please.I have to go to the grocery store.A.look
猜你喜欢