则f(x)=|x-1|+|x-3|≥|1-x+x-3|=2,
即f(x)min=2,
∵命题p:不等式|x-1|+|x-3|>a对一切实数x都成立,
∴a<f(x)min=2.
又命题q:已知函数f(x)=mx3+nx2的图象在点(-1,2)处的切线恰好与直线2x+y=1平行,
∴f(-1)=-m+n=2①
f′(-1)=3m(-1)2+2n(-1)=-2,即3m-2n=-2②
由①②得:m=2,n=4.
∴f(x)=2x3+4x2,
∴f′(x)=6x2+8x=2x(3x+4),
∴当-
4 |
3 |
∴f(x)在[-
4 |
3 |
∵f(x)=2x3+4x2在[a,a+1]上单调递减,
∴
|
4 |
3 |
∵“p或q“为真,[-
4 |
3 |
∴a<2.