设两向量e1,e2满足|e1|=2,|e2|=1,e1,e2的夹角为60度,若向量2te1+7e2与向量e1+te2的夹角为钝角,
求实数t的取值范围
人气:453 ℃ 时间:2019-09-17 14:07:20
解答
e1*e2=|e1|*|e2|*cos60°=1
向量2te1+7e2与向量e1+te2的夹角为钝角
则(2te1+7e2)*(e1+te2)<0
2t(e1)^2+(2t^2+7)e1e2+7t(e2)^2<0
8t+2t^2+7+7t<0
2t^2+15t+7<0
-7当向量2te1+7e2与向量e1+te2共线时
设2te1+7e2=a(e1+te2)=ae1+ate2
2t=a,7=at
解得t=±√14/2
所以向量2te1+7e2与向量e1+te2的夹角为钝角t的取值(-7,-√14/2)∪(-√14/2,-1/2)
推荐
- 设两向量e1,e2满足|e1|=2,|e2|=1,e1,e2的夹角为60度,若向量2te1+7e2与向量e1+te2的夹角为钝角,求t的
- e1,e2为向量,2te1+7e2与e1+te2的夹角为钝角,那么 (2te1+7e2)(e1+
- 已知e1,e2满足│e1│=2,│e2│=1,且e1,e2的夹角为60°,设向量2te1+7e2与向量e1+te2的夹角为θ(t属于R)
- 设两向量e1,e2满足|e1|=2,|e2|=1,e1,e2的夹角为60度,若向量2te1+7e2与向量e1+te2的夹角为
- 已知向量e1,e2满足|e1|=2,|e2|=1且=60°,设2te1+7e2与e1+te2夹角为θ
- 别出心裁 心
- 一根绳子第一次剪去5分之1,还剩5米,如果用去它的4分之1,还剩几米?
- 开放英语2形成性考核册答案
猜你喜欢