已知x y z 为非零整数,且xy+yz+zx=0,又若a b c是不等于1的正数,满足a^x=b^y=c^z,求证abc=1.
人气:131 ℃ 时间:2020-02-15 08:46:48
解答
a^x=b^y=c^z
因为 a,b,c>0,且不等于1 ,所以,同时取对数,有:
xlga=ylgb=zlgc
令上式的值是k,
即xlga=ylgb=zlgc=k
这样,因为x,y,z不等于0,所以,有
lga=k/x
lgb=k/y
lgc=k/z
三式相加有:
lga+lgb+lgc=k(1/x+1/y+1/z)=k/xyz*(yz+xz+xy)=0
即lg(abc)=0
所以 abc=1
推荐
- 已知x,y,z为整数,xy+yz+zx=0,a,b,c是不等于1的正数,且满足a^x=b^y=c^z=0,求证:abc=1
- 已知x+y+z不等于0, x[(1/y)+(1/z)]+y[(1/z)+(1/x)]+z[(1/x)+(1/y)]+3=0 求证:xy+yz+zx=0
- 已知x、y、z为非零正整数,且xy+yz+zx=0,abc是不等于1的正数,且满足a求证:abc=1
- 已知xyz是整数,xy+yz+zx=0,a,b.c是不等于一的正数,且满足a的x次方=b的y次方=c的z次方,求证,abc =1
- 已知x、y、z是整数,且xy+yz+xz=0,a、b、c是不等于1的正数,且满足a^x=b^y=c^z求证:abc=1
- 咏雪全文的朗读节奏划分
- The question who .它们是什么从句,怎样区分这样的从句?
- 已知二次不等式ax^2+bx+c>0的解集为{x|-1
猜你喜欢