> 数学 >
已知x y z 为非零整数,且xy+yz+zx=0,又若a b c是不等于1的正数,满足a^x=b^y=c^z,求证abc=1.
人气:443 ℃ 时间:2020-02-15 08:46:48
解答
a^x=b^y=c^z
因为 a,b,c>0,且不等于1 ,所以,同时取对数,有:
xlga=ylgb=zlgc
令上式的值是k,
即xlga=ylgb=zlgc=k
这样,因为x,y,z不等于0,所以,有
lga=k/x
lgb=k/y
lgc=k/z
三式相加有:
lga+lgb+lgc=k(1/x+1/y+1/z)=k/xyz*(yz+xz+xy)=0
即lg(abc)=0
所以 abc=1
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版