在平面直角坐标系中,已知两点A(-3,0)和B(3,0),定直线l:x=9/2平面内动点M总满足向量AM·向量B=0
(1)求动点M的轨迹C的方程
(2)设过定点D(2,0)的直线l(不与X轴重合)交曲线于Q.R两点,求证:直线AQ与直线RB交点总在直线l上
人气:453 ℃ 时间:2020-06-17 00:50:10
解答
1)设M(x,y)
AM=(x+3,y) BM=(x-3,y)
因为向量AM·向量BM=0
所以(x+3)(x-3)+y^2=0
整理得到x^2+y^2=3^2=9
所以求动点M的轨迹C的方程:x^2+y^2=9
2)即是求证交点G的横坐标为常量9/2
显然过定点D(2,0)的直线l斜率存在
所以设l方程y=kx-2k
联立圆方程消去y 得到
(k^2+1)x^2-4k^2x+4k^2-9=0
不妨设Q(x1,y1) R(x2,y2)
那么x1+x2=4k^2/k^2+1 x1x2=4k^2-9/k^2+1,很容易也可以求出y1+y2=f(k) y1y2=g(k)
然后用两点式可以分别写出AQ,RB方程
然后令方程相等 在把x1+x2,x1x2,y1+y2,y1y2代入化简
就可以得到横坐标是常数了
推荐
- 在平面直角坐标系中,给定两点A(0,1)和B(2,-1),若点M(-1,m)满足向量AM·向量BM=6,则m值为
- 已知平面直角坐标系内的两个向量a=(1,2),b=(m,3m-2),且平面内的任一向量c都可以唯一表示成c=λa-μb(λ,μ为实数),则m的取值范围是_.
- 在平面直角坐标系中已知A(1,0),向量e(0,1),点B为直线x=1上的动点,
- 已知A(3,0),动点P(x,y)在椭圆x^2/25+y^2/16=1,M是平面上一点,满足AM向量的绝对值等于1且PM向量×AM向量=0
- 设m∈R,在平面直角坐标系中,已知向量a=(mx,y+1),向量b=(x,y−1),a⊥b,动点M(x,y)的轨迹为E.求轨迹E的方程,并说明该方程所表示曲线的形状.
- 郑板桥世称三绝的是什么
- 双曲线的焦半径公式是什么?
- Δεν ήμουν πλέον πριν από το Ι
猜你喜欢