> 其他 >
设f(x)连续,g(x) =∫(1,0)f(xt)dt,且lim x→0 f(x)/x =A,求 g'(x).
如题
人气:470 ℃ 时间:2020-05-24 01:06:06
解答
x>0时,g(x)=∫(0,1)f(xt)(1/x)dxt=1/x∫(0,x)f(y)dy.所以g'(x)=(-1/x^2)∫(0,x)f(y)dy + f(x)/x.x=0时,lim x→0 f(x)/x =A,所以lim x→0 f(x)=0,所以f(0)=0,所以g(0)=0.所以g'(0)=lim x→0 g(x)/x=lim x→0 ∫(0,1)f...
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版