设f(x)连续,g(x) =∫(1,0)f(xt)dt,且lim x→0 f(x)/x =A,求 g'(x).
如题
人气:470 ℃ 时间:2020-05-24 01:06:06
解答
x>0时,g(x)=∫(0,1)f(xt)(1/x)dxt=1/x∫(0,x)f(y)dy.所以g'(x)=(-1/x^2)∫(0,x)f(y)dy + f(x)/x.x=0时,lim x→0 f(x)/x =A,所以lim x→0 f(x)=0,所以f(0)=0,所以g(0)=0.所以g'(0)=lim x→0 g(x)/x=lim x→0 ∫(0,1)f...
推荐
- f(x)二阶可导,g(x) =∫(0,1)f(xt)dt,且lim x→0 f(x)/x =A问g'(x)在x=0处是否连续
- 设f(x)在[0,+∞)连续,limf(x)=A (x→+∞),求证lim∫(0到x)f(t)dt=+∞(x→+∞)
- 设函数f(x)在[A,B]上连续,证明lim(h→0) 1/h*∫(x,a)[f(t+h)-f(t)]dt=f(x)-f(a),其中A
- 设f(x)是连续函数,且lim(x>0)f(x)/x=2,若g(x)=∫(0到1)f(xt)dt,试求g'(x),并讨论g'(x)在x=0处的连续性
- 设函数f(x)在区间[a,b]上连续,则lim(x->a)∫(a->x)f(t)dt=____,lim(x->a)1/(x-a)∫(a->x)f(t)dt=_____
- 如果 3 *7=25 ,则该数为几进制 是怎么算的
- 松树的叶子是什么形状的?
- 将固体NH4I置于密闭容器中,在一定温度下发生下列反应,
猜你喜欢