f(x)二阶可导,g(x) =∫(0,1)f(xt)dt,且lim x→0 f(x)/x =A问g'(x)在x=0处是否连续
人气:191 ℃ 时间:2020-05-09 08:44:12
解答
g(x) = ∫(0→1) ƒ(xt) dt
令u = xt,du = x dt
t = 0,u = 0
t = 1,u = x
g(x) = (1/x)∫(0→x) ƒ(u) du
g'(x) = (1/x) * ƒ(x) - (1/x²)∫(0→x) ƒ(u) du
g'(0) = lim(x→0) ƒ(x)/x - lim(x→0) [∫(0→x) ƒ(u) du]/x²
= A - lim(x→0) ƒ(x)/(2x)
= A - (1/2)A
= A/2
既然g'(0)存在,则g(x) = 0处连续,可导则必定连续.
推荐
- 设f(x)在x=0处连续,且lim(x趋于0)f(x)/x存在,证明,f(x)在x=0处可导
- 设f(x)连续,g(x) =∫(1,0)f(xt)dt,且lim x→0 f(x)/x =A,求 g'(x).
- 若函数f(x)在x=0处连续,且lim(f(x)/x)存在,试问函数f(x)在点x=0处是否可导
- 设f(x)是连续函数,且lim(x>0)f(x)/x=2,若g(x)=∫(0到1)f(xt)dt,试求g'(x),并讨论g'(x)在x=0处的连续性
- 求x趋于0时lim(1/x)积分符号(上1下0)f(xt)dt
- 哪一个食谱更健康?中译英
- a与b互质,均是c的因数,请证明a与b的乘积ab也是c的因数?
- 南极冰川现状如何
猜你喜欢