动点P与点F(1,0)的距离和他到直线 L:x=-1的距离相等,记点P的轨迹曲线为C1.圆C2的圆心T是曲线C1上的动点,圆C2与Y轴交于M,N两点,且MN=4
(1)求曲线C1的方程
(2)设点A(a,0)(a>2),若点A到点T的最短距离为a-1,试判断直线L与圆C2的位置关系,并说明理由?
人气:186 ℃ 时间:2020-01-25 16:18:30
解答
(1)设动点P(x,y)
则PF=√(x-1)2+y2]
P到x=-1距离=|x-(-1)|=|x+1|
√(x-1)2+y2]=|x+1|
平方
x2-2x+1+y2=x2+2x+1
所以C1是y2=4x
(2)设点T的坐标为(x0,y0),圆C2的半径为r,
∵点T是抛物线C1:y2=4x上的动点,
∴y02=4x0(x0≥0).
推荐
- 动点P与点F(1,0)的距离和它到直线L:X=-1的距离相等,记点p的轨迹为C1,圆C2的圆心T是曲线C1上的动点
- 已知曲线C是到P(-1/2,3/8)和直线y=-5/8距离相等的轨迹,l是过点Q(-1,0)的直线,
- 一动圆与直线x=-1相切且始终过点(1,0),动圆的圆心的轨迹为曲线C,那么曲线C上的点到直线x=-1的距离与直线x
- 已知圆C1(x+1)^2+y^2=1和圆C2(x-1)^2+y^2=9,求与圆C1外切而内切于圆C2的动圆圆心P的轨迹方程
- 2.已知圆C1:(x+3)*2+y*2=1和圆C2:(x-3)*2+y*2=9,动圆M同时与圆C1及圆C2相外切,求动圆圆心M的轨迹方程
- fine dining restaurant是什么意思
- 成语预言故事
- 小明用一根绳子测量一棵大树一米高处的树干直径.量拉两次第一次:将绳子对折后,饶树干两周还余下1米.第
猜你喜欢