证明题 设f(x)为连续函数,F(t)=∫(1~t)dy∫(y~t)f(x)dx 1.证明:F(t)=∫(1~t)(x-1)f(x)dx
2.求F(2)的导数
人气:459 ℃ 时间:2019-08-20 19:57:20
解答
①:
F(t) = ∫(1→t) dy ∫(y→t) ƒ(x) dx
交换积分次序:从Y型区域变为X型区域
y∈[1,t] ==> y∈[1,x]
x∈[y,t] ==> x∈[1,t]
F(t) = ∫(1→t) dx ∫(1→x) ƒ(x) dy
= ∫(1→t) (x - 1)ƒ(x) dx
②:
F(t) = ∫(1→t) (x - 1)ƒ(x) dx,由上面的结果
F'(t) = (t - 1)ƒ(t)
F'(2) = (2 - 1)ƒ(2) = ƒ(2)
推荐
- 设y=f(x,t),而t是方程F(x,y,t)=0所确定的x,y的函数(F't(x,y,t)≠0),求dy/dx..
- 设y=f(x,t)而t=t(x,y)是方程F(x,y,t)=0确定的隐函数,f、F均有一阶连续偏导数且F't+F'yf't≠0,求dy/dx
- f(x)在[0,+∞)内连续,且lim(x→+∞)f(x)=1.证明函数y=e^(-x)∫(0,x)e^tf(t)dt满足方程dy/dx+y=f(x)
- 设f(x)在【0,1】上连续且∫(0,1)f(x)dx=A,证明∫(0,1)dx∫(x,1)f(x)f(y)dy=A∧2/2,谢谢!
- 设函数f(x)在[0,1]上连续,证明:∫(0->1)dx∫(0->1)dy∫(x->y)f(x)f(y)f(z)dz=0
- 求过点p(2,3),并且在两轴上的截距相等的直线方程_.
- (a+3)(a-5)+16因式分解
- 某实验室需要盐水,要求盐水的密度是1.1×10³kg/m³,现配置了0.4dm³的盐水,称得盐水质量是0.6kg,这种盐水是否符合要求?若不符合,该加盐还是加水?加多少千克?
猜你喜欢