设函数f(x)=x^3+2ax^2+bx+a g(x)=x^2-3x+2,其中x∈R.a、b为常数.已知曲线y=f(x)与y=g(x)在点(2,0)处有
的切线.(1)求a、b .(2)若f(x)+g(x)=mx有三个互不相同的实根0、x1、x2,其中x1<x2,且对任意的x∈[x1,x2],f(x)+g(x)<m(x-1)恒成立,求实数m的取值范围.
人气:214 ℃ 时间:2019-10-19 22:03:48
解答
(1)对两函数进行求导:f'(x)=3x^2+4ax+b,g(x)=2x-3,它们在点(2,0)处有共同切线L,所以:f'(2)=12+8a+b=g'(2)=1.另外,把点(2,0)代入f(x)方程得:8+9a+2b=0.两式联立可求:a=-2,b=5.由上述分析知:直线L斜率k=1,过点(2,0),所以方程为:y=x-2.
(2)由(1)知,f(x)=x^3-4x^2+5x-2,则f(x)+g(x)=x^3-3x^2+2x=mx,即:x(x^2-3x+2-m)=0
由题意,方程x^2-3x+2-m=0有两个不等实数根x1,x2.所以:Delta=(-3)^2-4(2-m)>0,解得:m>-1/4.接下来,由f(x)+g(x)1时,区间的任意x>1,所以x^2-2x-m
推荐
- 设函数f(x)=x^3+2ax^2+bx+a,g(x)=x^2-3x+2,其中x∈R,a、b为常数.已知曲线y=f(x)与y=g(x)在点(2,0)
- 已知函数f(x)=1/3x^3-1/2ax^2+9/2(a>0).(1)当a=3时,求f(x)的单调递增区间; (2)求证:曲线y=f(x)总有...
- 已知函数f(x)=x3-2ax2 +bx,x属于R,a,b为常数,g(x)=-2x2+4 x.若曲线y =f (x )与y =g (x )在点(2 ,0 )处有相同的切线,求a ,b 的值
- (2014•呼伦贝尔一模)若函数f(x)=13x3-12ax2+(a-1)x+1在区间(1,4)内为减函数,在区间(6,+∞)为增函数,则实数a的取值范围是( ) A.(-∞,2] B.[5,7] C.[4,6] D.(-∞,5]∪[7,
- 已知函数f(x)=2/3x3-2ax2+3x(x∈R). (1)若a=1,点P为曲线y=f(x)上的一个动点,求以点P为切点的切线斜率取最小值时的切线方程; (2)若函数y=f(x)在(0,+∞)上为单调增函数,试求
- 英语翻译
- (X+10)的3次=-27怎么算?
- The place has changed a lot.The place is quite____ ____ before.They used to get up at 6.30 They o
猜你喜欢